We study the problem of model selection in causal inference, specifically for the case of conditional average treatment effect (CATE) estimation under binary treatments. Unlike model selection in machine learning, we cannot use the technique of cross-validation here as we do not observe the counterfactual potential outcome for any data point. Hence, we need to design model selection techniques that do not explicitly rely on counterfactual data. As an alternative to cross-validation, there have been a variety of proxy metrics proposed in the literature, that depend on auxiliary nuisance models also estimated from the data (propensity score model, outcome regression model). However, the effectiveness of these metrics has only been studied on synthetic datasets as we can observe the counterfactual data for them. We conduct an extensive empirical analysis to judge the performance of these metrics, where we utilize the latest advances in generative modeling to incorporate multiple realistic datasets. We evaluate 9 metrics on 144 datasets for selecting between 415 estimators per dataset, including datasets that closely mimic real-world datasets. Further, we use the latest techniques from AutoML to ensure consistent hyperparameter selection for nuisance models for a fair comparison across metrics.
translated by 谷歌翻译
With an ever-growing number of parameters defining increasingly complex networks, Deep Learning has led to several breakthroughs surpassing human performance. As a result, data movement for these millions of model parameters causes a growing imbalance known as the memory wall. Neuromorphic computing is an emerging paradigm that confronts this imbalance by performing computations directly in analog memories. On the software side, the sequential Backpropagation algorithm prevents efficient parallelization and thus fast convergence. A novel method, Direct Feedback Alignment, resolves inherent layer dependencies by directly passing the error from the output to each layer. At the intersection of hardware/software co-design, there is a demand for developing algorithms that are tolerable to hardware nonidealities. Therefore, this work explores the interrelationship of implementing bio-plausible learning in-situ on neuromorphic hardware, emphasizing energy, area, and latency constraints. Using the benchmarking framework DNN+NeuroSim, we investigate the impact of hardware nonidealities and quantization on algorithm performance, as well as how network topologies and algorithm-level design choices can scale latency, energy and area consumption of a chip. To the best of our knowledge, this work is the first to compare the impact of different learning algorithms on Compute-In-Memory-based hardware and vice versa. The best results achieved for accuracy remain Backpropagation-based, notably when facing hardware imperfections. Direct Feedback Alignment, on the other hand, allows for significant speedup due to parallelization, reducing training time by a factor approaching N for N-layered networks.
translated by 谷歌翻译
Measuring and monitoring soil organic carbon is critical for agricultural productivity and for addressing critical environmental problems. Soil organic carbon not only enriches nutrition in soil, but also has a gamut of co-benefits such as improving water storage and limiting physical erosion. Despite a litany of work in soil organic carbon estimation, current approaches do not generalize well across soil conditions and management practices. We empirically show that explicit modeling of cause-and-effect relationships among the soil processes improves the out-of-distribution generalizability of prediction models. We provide a comparative analysis of soil organic carbon estimation models where the skeleton is estimated using causal discovery methods. Our framework provide an average improvement of 81% in test mean squared error and 52% in test mean absolute error.
translated by 谷歌翻译
检测和避免(DAA)功能对于无人飞机系统(UAS)的安全操作至关重要。本文介绍了Airtrack,这是一个仅实时视觉检测和跟踪框架,尊重SUAS系统的大小,重量和功率(交换)约束。鉴于遥远飞机的低信噪比(SNR),我们建议在深度学习框架中使用完整的分辨率图像,以对齐连续的图像以消除自我动态。然后,对齐的图像在级联的初级和次级分类器中下游使用,以改善多个指标的检测和跟踪性能。我们表明,Airtrack在亚马逊机载对象跟踪(AOT)数据集上胜过最先进的基线。多次现实世界的飞行测试与CESSNA 172与通用航空交通相互作用,并在受控的设置中朝着UAS飞向UAS的其他近碰撞飞行测试,该拟议方法满足了新引入的ASTM F3442/F3442M标准DAA标准。经验评估表明,我们的系统的概率超过900m,范围超过95%。视频可在https://youtu.be/h3ll_wjxjpw上找到。
translated by 谷歌翻译
语言变化的研究研究了语言在不同的说话者组之间和内部的变化,从而阐明了我们如何使用语言来构建身份以及社会环境如何影响语言的使用。一种常见的方法是在语料库中识别某些语言特征的实例 - 例如零copula构造,并分析该功能在扬声器,主题和其他变量之间的分布,以便对功能或系统地了解该功能测量变化。在本文中,我们探讨了低资源英语品种中自动形态句法特征检测的具有挑战性的任务。我们提出了一种通过语料库引导的编辑生成和过滤有效的对比度集的人类在环境中的方法。我们表明,我们的方法改善了印度英语和非裔美国人英语的功能检测,展示了它如何帮助语言研究,并发布了我们的微调模型,以供其他研究人员使用。
translated by 谷歌翻译
在这项研究中,将放射学方法扩展到用于组织分类的光学荧光分子成像数据,称为“验光”。荧光分子成像正在出现在头颈部鳞状细胞癌(HNSCC)切除期间的精确手术引导。然而,肿瘤到正常的组织对比与靶分子表皮生长因子受体(EGFR)的异质表达的内在生理局限性混淆。验光学试图通过探测荧光传达的EGFR表达中的质地模式差异来改善肿瘤识别。从荧光图像样品中提取了总共1,472个标准化的验光特征。涉及支持矢量机分类器的监督机器学习管道接受了25个顶级功能的培训,这些功能由最小冗余最大相关标准选择。通过将切除组织的图像贴片分类为组织学确认的恶性肿瘤状态,将模型预测性能与荧光强度阈值方法进行了比较。与荧光强度阈值方法相比,验光方法在所有测试集样品中提供了一致的预测准确性(无剂量)(平均精度为89%vs. 81%; P = 0.0072)。改进的性能表明,将放射线学方法扩展到荧光分子成像数据为荧光引导手术中的癌症检测提供了有希望的图像分析技术。
translated by 谷歌翻译
自动语音识别(ASR)服务无处不在,将语音转换为Amazon's Alexa,Google助手和Microsoft的Cortana等系统的文本。但是,研究人员已经确定了种族群体和国籍的特定英语口音之间的ASR表现的偏见。在本文中,我们通过大规模审核将其与历史先例和定量相关联,从定性地扩展了这一讨论。语言的标准化和使用语言维持全球和政治权力的使用在历史上发挥了重要作用,我们解释说,这表明ASR服务对当今英语说话者的行为方式表明了相似之处。然后,使用来自Speakent Accent Archive的大量和全球数据集,其中包括2700多名在171个不同国家 /地区出生的英语演讲者,我们对一些最受欢迎的英语ASR服务进行了国际审核。我们表明,绩效差异的存在是说话者的母语是否是英语,即使在控制多种语言协变量时,这些差异与说话者出生国家的政治统一性具有统计学意义的关系美国的地缘政治力量。
translated by 谷歌翻译
本文介绍了频率卷积神经网络(CNN),用于快速,无创的​​2D剪切波速度(VS)成像的近表面地质材料。在频速度域中运行,可以在用于生成CNN输入的线性阵列,主动源实验测试配置中具有显着的灵活性,这些配置是归一化的分散图像。与波场图像不同,标准化的分散图像对实验测试配置相对不敏感,可容纳各种源类型,源偏移,接收器数量和接收器间距。我们通过将其应用于经典的近乎表面地球物理学问题,即成像两层,起伏的土壤 - 旁质界面的界面来证明频率CNN的有效性。最近,通过开发一个时间距离CNN来研究这个问题,该问题表现出了很大的希望,但在使用不同的现场测试配置方面缺乏灵活性。本文中,新的频道CNN显示出与时距CNN的可比精度,同时提供了更大的灵活性来处理各种现场应用程序。使用100,000个合成近表面模型对频率速度CNN进行了训练,验证和测试。首先,使用训练集的合成近表面模型测试了提议的频率CNN跨各种采集配置概括跨各种采集配置的能力,然后应用于在Austin的Hornsby Bend在Austin的Hornsby Bend收集的实验场数据美国德克萨斯州,美国。当针对更广泛的地质条件范围充分开发时,提出的CNN最终可以用作当前伪2D表面波成像技术的快速,端到端替代方案,或开发用于完整波形倒置的启动模型。
translated by 谷歌翻译
深度学习已被证明可以准确评估“隐藏”表型,并从传统临床医生对医学成像的解释之外的医学成像中预测生物标志物。鉴于人工智能(AI)模型的黑匣子性质,应在将模型应用于医疗保健时谨慎,因为预测任务可能会因疾病和患者人群的人口统计学差异而短路。使用来自两个医疗保健系统的大超声心动图数据集,我们测试使用深度学习算法从心脏超声图像中预测年龄,种族和性别,并评估各种混杂变量的影响。我们培训了基于视频的卷积神经网络,以预测年龄,性别和种族。我们发现,深度学习模型能够确定年龄和性别,同时无法可靠地预测种族。不考虑类别之间的混淆差异,AI模型预测性别为0.85(95%CI 0.84-0.86),年龄为9.12年的平均绝对误差为9.12年(95%CI 9.00-9.25),从AUC进行竞赛, 0.63-0.71。在预测种族时,我们表明,在培训数据中调整混杂变量(性别)的比例会显着影响AUC(从0.57到0.84),而在训练性别预测模型中,调整混杂因素(Race)并未实质性更改AUC(0.81-0.83)。这表明该模型在预测种族方面的表现很大一部分可能来自AI检测到的混杂功能。进一步的工作仍然是确定与人口统计信息相关的特定成像功能,并更好地了解医学AI中人口统计学识别的风险,因为它与潜在的偏见和差异有关。
translated by 谷歌翻译
我们展示了一种物理感知的变压器,用于从具有不同分辨率,颜色空间,焦距,焦距和暴露的相机的基于特征的数据融合。我们还展示了使用开源计算机图形软件为变压器合成训练数据生成的可扩展解决方案。我们演示了具有不同光谱响应,瞬时视野和框架速率的阵列上的图像合成。
translated by 谷歌翻译